Bibliography

url@samestyle

1
G. Agrawal, Nonlinear Fiber Optics.Academic Press, January 2001.

2
F. Annexstein, ``Generating De Bruijn sequences: an efficient implementation,'' IEEE Trans. Comput., vol. 46, no. 2, pp. 198-200, Feb 1997.

3
D. van den Borne, G. Khoe, H. de Waardt, and E. Gottwald, ``Bit pattern dependence in optical DQPSK modulation,'' Electronics Letters, vol. 43, no. 22, pp. -, 25 2007.

4
J. Proakis, Digital Communications.McGraw-Hill, 2000.

5
A. Gnauck and P. Winzer, ``Optical phase-shift-keyed transmission,'' J. Lightw. Technol., vol. 23, no. 1, pp. 115-130, Jan. 2005.

6
D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, ``The phase-shaped binary transmission (PSBT): a new technique to transmit far beyond the chromatic dispersion limit,'' IEEE Photon. Technol. Lett., vol. 9, no. 2, pp. 259-261, Feb. 1997.

7
D. Penninckx, ``Enhanced-phase-shaped binary transmission,'' Electronics Letters, vol. 36, no. 5, pp. 478-480, Mar 2000.

8
H. Kim and C. Yu, ``Optical duobinary transmission system featuring improved receiver sensitivity and reduced optical bandwidth,'' IEEE Photon. Technol. Lett., vol. 14, no. 8, pp. 1205-1207, Aug 2002.

9
D. Penninckx, H. Bissessur, P. Brindel, E. Gohin, F. Bakhti, R. Alcatel, and F. Marcoussis, ``Optical differential phase shift keying (DPSK) direct detection considered as a duobinary signal,'' in Proc ECOC 2001, 2001, paper We.P.40.

10
E. Forestieri and G. Prati, ``Narrow filtered DPSK implements order-1 CAPS optical line coding,'' IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 662-664, Feb. 2004.

11
I. Lyubomirsky and C.-C. Chien, ``DPSK demodulator based on optical discriminator filter,'' IEEE Photon. Technol. Lett., vol. 17, no. 2, pp. 492-494, Feb. 2005.

12
I. Lyubomirsky, C.-C. Chien, and Y.-H. Wang, ``Optical DQPSK receiver with enhanced dispersion tolerance,'' IEEE Photon. Technol. Lett., vol. 20, no. 7, pp. 511-513, April1, 2008.

13
S. Walklin and J. Conradi, ``Effect of mach-zehnder modulator DC extinction ratio on residual chirp-induced dispersion in 10-Gb/s binary and AM-PSK duobinary lightwave systems,'' IEEE Photon. Technol. Lett., vol. 9, no. 10, pp. 1400-1402, Oct. 1997.

14
H. Kim and A. Gnauck, ``Chirp characteristics of dual-drive. mach-zehnder modulator with a finite dc extinction ratio,'' IEEE Photon. Technol. Lett., vol. 14, no. 3, pp. 298-300, Mar 2002.

15
T. Kawanichi, K. Higuma, T. Fujita, S. Mori, S. Oikawa, J. Ichikawa, T. Sakamoto, M. Tsuchiya, and M. Izutsu, ``40Gbit/s Versatile LiNbO3 External Lightwave Modulator,'' in Proc ECOC 2005, 2005, paper Th.2.2.6.

16
T. Kawanishi, T. Sakamoto, A. Chiba, M. Izutsu, K. Higuma, J. Ichikawa, T. Lee, and V. Filsinger, ``High-speed dual-parallel mach-zehnder modulator using thin lithium niobate substrate,'' in Proc. OFC 2008, 2008, paper JThA34.

17
A. B. Carlson, P. Crilly, and J. Rutledge, Communication Systems, 4th ed.McGraw-Hill, New York, 2002.

18
B. Mikkelsen, C. Rasmussen, P. Mamyshev, and F. Liu, ``Partial dpsk with excellent filter tolerance and osnr sensitivity,'' Electronics Letters, vol. 42, no. 23, pp. 1363-1364, 9 2006.

19
V. Mikhailov, R. I. Killey, and P. Bayvel, ``Experimental investigation of partial demodulation of 85.3 gb/s dqpsk signals,'' in Proc. ECOC 2008, paper We.1.E.5,2008.

20
E. Forestieri, ``Evaluating the error probability in lightwave systems with chromatic dispersion, arbitrary pulse shape and pre- and postdetection filtering,'' J. Lightw. Technol., vol. 18, no. 11, pp. 1493-1503, Nov 2000.

21
P. Serena, A. Orlandini, and A. Bononi, ``Parametric-gain approach to the analysis of single-channel DPSK/DQPSK systems with nonlinear phase noise,'' J. Lightw. Technol., vol. 24, no. 5, pp. 2026-2037, May 2006.

22
W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in Fortran 77: The Art of Scientific Computing.NY. Cambridge Univ. Press, 1992.

23
G. Fishman, Monte Carlo: Concepts, Algorithms, and Applications.Springer, 1996.

24
A. Papoulis, Probability, random variables, and stochastic processes, 3rd ed.McGraw-Hill, 1991.

25
M. Jeruchim, P. Balaban, and K. Shanmugan, Simulation of communication systems.Plenum Press New York, NY, USA, 1992.

26
D. Godard, ``Self-recovering equalization and carrier tracking in two-dimensional data communication systems,'' IEEE Trans. Commun., vol. 28, no. 11, pp. 1867-1875, Nov 1980.

27
A. Leven, N. Kaneda, U.-V. Koc, and Y.-K. Chen, ``Frequency estimation in intradyne reception,'' IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 366-368, March15, 2007.

28
A. Viterbi, ``Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,'' IEEE Trans. Inf. Theory, vol. 29, no. 4, pp. 543-551, Jul 1983.

29
K. Kikuchi, ``Electronic Post-compensation for Nonlinear Phase Fluctuations in a 1000-km 20-Gbit/s Optical Quadrature Phase-shift Keying Transmission System Using the Digital Coherent Receiver,'' Optics Express, vol. 16, no. 2, pp. 889-896, 2008.

30
J.-F. Cardoso and B. Laheld, ``Equivariant adaptive source separation,'' IEEE Trans. Signal Process., vol. 44, no. 12, pp. 3017-3030, Dec 1996.

31
A. Vannucci and A. Bononi, ``Statistical characterization of the Jones matrix of long fibers affected by polarization mode dispersion (PMD),'' J. Lightw. Technol., vol. 20, no. 5, pp. 811-821, May 2002.

32
B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed.Wiley-Interscience, 2007.

33
C. W. Helstrom, Elements of signal detection and estimation.NJ, USA: Prentice-Hall, Inc., 1995.

34
C. Menyuk and B. Marks, ``Interaction of polarization mode dispersion and nonlinearity in optical fiber transmission systems,'' J. Lightw. Technol., vol. 24, no. 7, pp. 2806-2826, July 2006.

35
D. Marcuse, C. Manyuk, and P. Wai, ``Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,'' J. Lightw. Technol., vol. 15, no. 9, pp. 1735-1746, Sep 1997.

36
C. Menyuk and B. Marks, ``Interaction of polarization mode dispersion and nonlinearity in optical fiber transmission systems,'' J. Lightw. Technol., vol. 24, no. 7, pp. 2806-2826, July 2006.

37
J. P. Gordon and H. Kogelnik, ``PMD fundamentals:polarization-mode dispersion in optical fibers,'' Proc. Nat. Acad. Sci., vol. 97, no. 9, pp. 4541-4550, Apr. 2000.

38
A. Bononi and A. Vannucci, ``Is there life beyond the principal states of polarization?'' Optical Fiber Technology, vol. 8/4, pp. 257-294, Oct. 2002.

39
I. Kaminow, ``Polarization in optical fibers,'' IEEE J. Quantum Electron., vol. 17, no. 1, pp. 15-22, Jan 1981.

40
S. J. Evangelides, L. Mollenauer, J. Gordon, and N. Bergano, ``Polarization multiplexing with solitons,'' J. Lightw. Technol., vol. 10, no. 1, pp. 28-35, Jan 1992.

41
M. Eiselt, ``Limits on WDM systems due to four-wave mixing: a statistical approach,'' J. Lightw. Technol., vol. 17, no. 11, pp. 2261-2267, Nov 1999.

42
S. Kumar, ``Analysis of degenerate four-wave-mixing noise in return-to-zero optical transmission systems including walk-off,'' J. Lightw. Technol., vol. 23, no. 1, pp. 310-320, Jan. 2005.

43
R. J. LeVeque and J. Oliger, ``Numerical methods based on additive splittings for hyperbolic partial differential equations,'' Mathematics of Computation, vol. 40, no. 162, pp. 469-497, 4 1983.

44
J. H. Mathews and K. K. Fink, Numerical Methods Using Matlab, 4th ed.Prentice Hall, Inc., 2004.

45
O. Sinkin, R. Holzlohner, J. Zweck, and C. Menyuk, ``Optimization of the split-step Fourier method in modeling optical-fiber communications systems,'' J. Lightw. Technol., vol. 21, no. 1, pp. 61-68, Jan 2003.

46
Q. Zhang and M. Hayee, ``An SSF scheme to achieve comparable global simulation accuracy in WDM systems,'' IEEE Photon. Technol. Lett., vol. 17, no. 9, pp. 1869-1871, Sept. 2005.

47
J. Feldman, ``Variable step size methods,'' http://www.math.ubc.ca/ feldman/math/vble.pdf.



Optilux toolbox reference manual